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Abstract

This paper shows how to apply some ideas of algebraic analysis to the
study of a couple of systems of physical interest. In addition to giving an
overview of what has already been done in [3] for the Maxwell's equations,
in this paper we also consider the potentials. Finally, we treat the anti-self-

dual Abelian Yang-Mills equations.
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1. Introduction

In recent years, techniques from computational algebra have become
important to render effective some general results in the theory of partial
differential equations.

In [2] the authors have shown how these tools can be used to discover
and identify important properties of several systems of interest, such as
the Cauchy-Fueter, the Moisil-Theodorescu, the Maxwell, and the Proca
system.

In this paper we continue along these ideas. In particular, we revise
the Maxwell's system, already treated in [3] and [2], in the Minkowski
space R, Our computations are intended to be consistent with a gauge
theoretic approach of electromagnetism, and to bring us one step closer to
an algebraic approach to the study of symmetries of field theory. We also

further the same ideas to the Abelian instanton equations, both in the

real Euclidean space R* and in the complex Minkowski space ch3.
While much more work will be needed to fully understand the
implications of these results, our analysis of the syzygies of these systems

should be considered a starting point for a new interest in algebraic
methods in the theory of Yang Mills fields.

2. Algebraic Analysis of Maxwell's Equations in RY3

We recall some results from [3] which explicitly highlight the
connection between the study of syzygies and conservation laws in
physics.

Consider the matrix of differential operators:

0, 2, o, 0 0 0
-9, 0 0 0 -0, 2,

0 -9, 0 o, 0 -0,
P(D):{Pe(D)}= 0 0 -9, -2, Oy o |
pm(D)] | ©O 0 0 0, o, o,

0 -0, 2, 5, 0 0
0, 0 -0, 0 o, 0
—dy 0, 0 0 0 o, |
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where P¢(D) and P™(D) are the first and the last four rows,
respectively. Let us denote by F the vector
F = E,, Ey, Es, By, By, B[
and let also
G = [Ge’ Gm]t = [pe’ jle’ j2e> j§> pm, _jlm’ _jén> _jén]t9
denote the vector corresponding to both electric and magnetic sources.
Then for R =C[t, x, y, 2], we can consider the polynomial map

P! : R® - R® which one obtains by replacing, in P(D), the derivatives
Oty Oy, 0y, 0 by the variables ¢, x, y, z. The gist of algebraic analysis

consists in studying the resolution of such polynomial map. In this case,

as it was shown for example in [2], the resolution is given by

Plt pt
0> R>?>R8 5> R® - RS/ PIR® 5 0.

We will usually denote M = R® / P!R®, for simplicity of notation. It is

important that we are in fact able to compute the map P;, and it is

B.(D) - pe(n)] _ o 0 2, 2, 0 0 0 0
1 pm(p)| |0 0 0 0 0, -0, -0, -0,

In this setting, the first three authors proved the following results [2]
Theorem 1. The system P(D)F = G has a solution F € S if and
only if G € S" satisfies P,(D)G = 0, i.e.,
0, +V-j® =0
0,p™ +V i = 0. ©)

Note that the electric compatibility equation is coming from d(d * F)
=d(J), where J is the charge-current vector (vanishing divergence

equation), so that for any closed 3-surface Q one has
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IJ:O.
Q

Theorem 2. The characteristic variety of Ext'(M, R), as a set, is

given by
(2 —x%—y2 227 — o,
Therefore Ext'(M, R) # 0 and, moreover, Ext>(M, R) = 0.

This implies also that the compact singularities of its C™-solutions

cannot be eliminated.

Theorem 3. Let Q € R* be an open set and x € Q. Then every
solution of the Maxwell system in Q - {x}, whose components can be
extended as distributions to all of Q, is a distribution soloution to the

Maxwell system to all of Q.

Finally, the particular structure of the Maxwell system (linearity and
constant coefficients) allows us to write an integral representation for all
its solutions, in accord with the Ehrenpreis-Palamodov Fundamental
Principle.

Theorem 4. Let V be the multiplicity variety of the system associated
to (1). Let f : R* - RS be a solution of the Maxwell equations. Then

there exist Noetherian operators N ; (x, 2) such that f can be represented

as

flx) = Z‘[Vei<x’2>Nj(x, 2)dvj(z),
j

where dvj(z) are densities supported on V and satisfying, for every

compact K < Q

J MK (%2 gy < oo,
\%
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We will now proceed to offer a similar algebraic analysis of Maxwell
equations, but we will now consider them as equations in A", rather
than in F. Consider first the formulas (3), which are equivalent to
F =dA, ie., F¥W = g"AY — 0V A", and so equivalent to the homogenous

Maxwell equations. We write them in terms of matrices as follows. Let

0, -0, 0 0

-0y 0 -0, 0

-0 0 0 -0

D) = z t
QDY = 0 -0, o,
0 a, 0 ~ 0,
|0 -0y 0y 0 |

and consider the vectors A4 = (A4°, A, A2, A3 ¥ and F = (El, E?, E3,

B!, B2, B3 ). Then the formulas

E=-2A _yx0
ot
B=VxA, 3)

which are equivalent to the homogenous Maxwell equations are also
equivalent to the system @Q(D)A = F. Using CoCoA this gives the

resolution:
&k @ ¢
0 >R SR*SR SR 5 M 50 (4)

and syzygies:
0 0 0 Oy dy 0,
0 -0 0 0 0 0

D) = 4 y t

QD) a, 0 -0, 0 2, 0
- o, 0, 0 0 0 2,

and
QQ(D) = [at’ — 0y, — ay’ - 8z]'

We obtain a similar theorem as above.
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Theorem 5. The system Q(D)A = F has a solution A € S’ if and
only if F € S satisfies @ (D)F = 0, i.e.,
V-B=0
VxE+0o;B=0.

Therefore the potential A satisfies the formulas (3) if and only if the
magnetic source-free Maxwell equations dF = 0 are satisfied. Moreover, if

we consider magnetic sources in the form G™ = (p™,j™), then the system
@, (D)F = G™ has a solution F € S if and only if G € S satisfies
QR9(D)G™ =0, i.e.,

atpm +V’jm = 0.

In order to obtain a similar interpretation of the electric source-free part

of Maxwell's equations (d * F = 0), one could start with the following

matrix @"(D) :

0 0 2, -,
0 o, 0 O
ew- 0L
-2, 0 -0 0
-0, 0 (—

and then consider the equation @*(D)A = *F = ( - B, - B, - B3, E!,
E 2, E3 )t. The module associated to this equation has the same
resolution (4), as @"(D) is obtained from @(D) by interchanging the first
three rows with the last three rows and multiplying the new first three
rows by -1. Moreover, the syzygy @7 (D) is basically the same as @;(D)
modulo a minus sign and switching the first two with the last two rows.

The second syzygy is @5(D) = -Q9(D), and we obtain a similar theorem:
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Theorem 6. The system Q*(D)A = *F has a solution A € S’ if and

onlyif * F € S satisfies @ (D)* F =0, i.e.,
V-E=0
V x B - atE = 0.

Therefore the potential A satisfies the formulas (3) if and only if the

electric source-free Maxwell equations d * F = 0 are satisfied. Moreover,

if we consider electric sources in the form G°® = (p°, j°), then the system
Q;(D)* F = G° has a solution *F e 8 if and only if G° e S"

satisfies @5(D)G¢ = 0, i.e.,
6tpe +V'je = 0.

Our results above can be understood in terms of products of matrices
of differential operators as follows. Note that considering the system

P(D)F = G, where F = Q(D)A, we notice that P™(D)Q(D) = 0, so the
system becomes only P°(D)Q(D) = G°. The physical explanation is that

in the presence of the gauge potential A and electric sources G¢,

magnetic monopoles cannot exist. This can be seen directly, as
F = dAleads to dF = 0.

Similarly, the dual system P*(D)* F = G, where * F = @*(D)A will
simplify to P™(D)Q*(D)A = G™, as P¢(D)Q*(D)=0. The physical
explanation is that in the presence of the gauge potential A and magnetic

sources G™, electric sources cannot exist [2].

Consider now Maxwell's equation d * F =<J in the variables A,

which reads:

DA” - 0,(0,A") = jV.
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In order to write its matrix, note that we can also multiply the matrix

obtained from the first four rows of the matrix P(D) above (1), say

Oy 0y 0, 0 0 0

~ -0 0 0 0 -0, 0
P(D) = ¥
(D) 0 -0 0 0, 0 -0,
0 0 - 04 -0, Oy 0

and the matrix @(D). We obtain the matrix:

- 0% -2 - o2 ~ 0,0, - 0,0, - 0,0,
S(D) = 0,0, - 02 - 02 +07 0,0, 0,0,
9,0 0,0 —02 0% + 02 9,0
yYt xYy x z t yz
0,0, 0,0, 8,0, — 02 - 0% + o7

Consider now the new system
S(D)A = G* =p, j', i% J°T.
By running CoCoA on S and we get the resolution:

st St
1 L4 4
0O->R ->R* >R > M —>0

with one syzygy

Sl(D) = [6t’ O 6y’ 62],

which gives again the conservation law for the electric current, as

expected.

Theorem 7. The system S(D)A = G° has a solution F € S if and

only if G® € S satisfies S;(D)G® = 0. i.e.,
5tpe +Vje =0.

Finally, we note that in the case of Maxwell's equations it is not
useful to combine both @ and S together in a single matrix because in
this case the potentials are a tool to determine the fields. Note here that
the resulting characteristic variety is zero, which leads to non-trivial

implications for this system.
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3. Algebraic Analysis of the Abelian ASD Equations

In this section, we apply our computational algebra techniques for
the Abelian anti-self- dual (ASD) equations written in local coordinates

using as variables E, the electric field, and then A, the gauge potential. In

the real Minkowski space R? both the ASD and the self-dual (SD)
equations are satisfied only for trivial F. Therefore, one must either

complexify F and consider this setup embedded in the complex

Minkowski space (Cl’?’, or work with real forms on (locally) either the

Euclidean space R* or the ultrahyperbolic space R%2. For simplicity of
presentation, we study only the cases of Euclidean and the complex
Minkowski spaces separately below. Also, for consistency of the
presentation, we will focus only on the ASD equations.

3.1. The Euclidean case.

In the standard Euclidean metric on R4, the ASD equations are:
Foy = —Fys, Fog = —F51, Fog = —F3y,
which are equivalent to E = -B. Because dF =0, it follows that
d* F =0, thus F is also a solution to the source-free Maxwell's system.
In local coordinates in variable E, the ASD equations in R* are:
-V-E=0, VxE+9E =0, (5)

and they have real solutions. As in the previous section, we consider the

matrix of differential operators:

-0, —0, -0,
0; 0, -0

V(D) = Y
( ) - 52 at ax
0y — 0y 0;

and consider the electric vector E = (E!, E2, E®)". Then the equations
(5) are equivalent to the system V(D)E = 0. For an electric source

J = (p, j1, Ja, Jg), we consider the non-homogenous system V(D)E = J.
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Using CoCoA we compute the resolution corresponding to the associated

module:

V! t

0> R SR SR - M -0 (6)
and the syzygy:
Vi(D) = [0y, 0y, 0y, 0. ]
We obtain a similar theorem as above.
Theorem 8. The system V(D)E =< corresponding to the ASD

equations in R*, has a solution E € S if and only if E € S satisfies

Vi(D)J = 0, i.e., the conservation law

If we consider the ASD equations in variable A, as we did in the case
of Maxwell's system, we obtain the system W(D)A = J, where:

~ 02 - 9% - &2 0,0, 0,0, 0,0,

WD) - 0,0, - o7 - azgt 0,0,
0,0, 0,0, — - 0,0,

0,0, - 0,0, 0,0, - 02

with the corresponding resolution:
1 1t 4 wt 4
0O>R > R*">R*">M-—>0 )

and W, is basically the same syzygy as V.
3.2. The complex Minkowski case.

In CY3 the ASD equations are B = —iE, which, in local
(complex) coordinates are equivalent to

V-E=0, VxE-io,E =0. (8

The solutions in real space-time are automatically complex valued. If

we denote the complex electric 3-vector by E = E; + iE9, where both E;

and E, are real 3-vectors, then the system obtained from (8) is
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V'EIIO, V><E1+8tE2:O
V- E2 = 0, V x E2 - GtE'l = 0, (9)

system which is analog to the real Maxwell system. We keep the same

notation for the matrices involved, but we consider variables (E;, E5)
instead of (E, B), and the vector G =[G, GST = [p¢, &, ites j%s, PS,

jé1, i%s, jS3 T, formed by the real components of the complex vector
(p, ). Our computation algebra techniques will yield then, in a similar

fashion, the following theorem:
Theorem 9. The system P(D)E =G has a solution

E = E, +iEy € S if and only if G € S satisfies P,(D)G = 0. i.e., the

compatibility law for the complex electric source (p, j) :
0,08 +V-j°=0. (10)

A similar analysis for (complex) variables A will yield a similar result

as Theorem 5.

It is important to notice that in our algebraic approach the real-
Minkowski Maxwell's system of equations yields the same matrices as

the complex-Minkowski Abelian instanton equations. In both cases, the
characteristic variety of Ext'(M, R) is a cone, therefore, in both cases,

the compact singularities cannot be eliminated, [2].
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