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Abstract 

This paper shows how to apply some ideas of algebraic analysis to the 
study of a couple of systems of physical interest. In addition to giving an 
overview of what has already been done in [3] for the Maxwell's equations, 
in this paper we also consider the potentials. Finally, we treat the anti-self-
dual Abelian Yang-Mills equations. 
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1. Introduction 

In recent years, techniques from computational algebra have become 
important to render effective some general results in the theory of partial 
differential equations. 

In [2] the authors have shown how these tools can be used to discover 
and identify important properties of several systems of interest, such as 
the Cauchy-Fueter, the Moisil-Theodorescu, the Maxwell, and the Proca 
system. 

In this paper we continue along these ideas. In particular, we revise 
the Maxwell's system, already treated in [3] and [2], in the Minkowski 
space .3,1R  Our computations are intended to be consistent with a gauge 
theoretic approach of electromagnetism, and to bring us one step closer to 
an algebraic approach to the study of symmetries of field theory. We also 
further the same ideas to the Abelian instanton equations, both in the 
real Euclidean space 4R  and in the complex Minkowski space .3,1C  

While much more work will be needed to fully understand the 
implications of these results, our analysis of the syzygies of these systems 
should be considered a starting point for a new interest in algebraic 
methods in the theory of Yang Mills fields. 

2. Algebraic Analysis of Maxwell's Equations in 3,1R  

We recall some results from [3] which explicitly highlight the 
connection between the study of syzygies and conservation laws in 
physics. 

Consider the matrix of differential operators: 
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where ( )DP e  and ( )DPm  are the first and the last four rows, 

respectively. Let us denote by F the vector 

[ ]tBBBEEEF 321321 ,,,,,=  

and let also 

[ ] [ ] ,,,,,,,,, 321321
tmmmmeeeetme jjjjjjGGG −−−ρρ==  

denote the vector corresponding to both electric and magnetic sources. 
Then for [ ],,,, zyxtR C=  we can consider the polynomial map 

68: RRPt →  which one obtains by replacing, in ( ),DP  the derivatives 

zyxt ∂∂∂∂ ,,,  by the variables .,,, zyxt  The gist of algebraic analysis 

consists in studying the resolution of such polynomial map. In this case, 
as it was shown for example in [2], the resolution is given by 

.00 86682 1
→→→→→ RPRRRR tPP tt

 

We will usually denote ,86 RPRM t=  for simplicity of notation. It is 

important that we are in fact able to compute the map ,1P  and it is 
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In this setting, the first three authors proved the following results [2] 

Theorem 1. The system ( ) GFDP =  has a solution 0rF S∈  if and 

only if 1rG S∈  satisfies ( ) ,01 =GDP  i.e., 

0=⋅∇+ρ∂ ee
t j  

.0=⋅∇+ρ∂ mm
t j  (2) 

Note that the electric compatibility equation is coming from ( )Fdd ∗  

( ),Jd=  where J is the charge-current vector (vanishing divergence 

equation), so that for any closed 3-surface Ω  one has  
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.0=∫ΩJ  

Theorem 2. The characteristic variety of ( ),,1 RMExt  as a set, is 

given by 

( ) .022222 =−−− zyxt  

Therefore ( ) 0,1 ≠RMExt  and, moreover, ( ) .0,2 =RMExt  

This implies also that the compact singularities of its -∞C solutions 

cannot be eliminated. 

Theorem 3. Let 4R∈Ω  be an open set and .Ω∈x  Then every 

solution of the Maxwell system in { },x−Ω  whose components can be 

extended as distributions to all of ,Ω  is a distribution soloution to the 
Maxwell system to all of .Ω  

Finally, the particular structure of the Maxwell system (linearity and 
constant coefficients) allows us to write an integral representation for all 
its solutions, in accord with the Ehrenpreis-Palamodov Fundamental 
Principle. 

Theorem 4. Let V be the multiplicity variety of the system associated 

to (1). Let 64: Rf →R  be a solution of the Maxwell equations. Then 
there exist Noetherian operators ( )zxN j ,  such that f can be represented 

as 

( ) ( ) ( ),,, zdvzxNexf jj
zxi

Vj
∫∑=  

where ( )zdvj  are densities supported on V and satisfying, for every 

compact Ω⊂K  

( ) .,max +∞<Κ∫ dve zx
V
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We will now proceed to offer a similar algebraic analysis of Maxwell 

equations, but we will now consider them as equations in ,µA  rather 
than in F. Consider first the formulas (3), which are equivalent to 

,dAF =  i.e., ,µµµ ∂−∂= AAF vvv  and so equivalent to the homogenous 
Maxwell equations. We write them in terms of matrices as follows. Let 
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and consider the vectors ( )tAAAAA 3210 ,,,=  and ( ,,, 321 EEEF =  

) .,, 321 tBBB  Then the formulas 

0AtE ∇−
∂
∂−= A  

,A×∇=B  (3) 

which are equivalent to the homogenous Maxwell equations are also 
equivalent to the system ( ) .FADQ =  Using CoCoA this gives the 
resolution: 

00 4641 12
→→→→→→ MRRRR

ttt QQQ
 (4) 

and syzygies: 

( )


















∂∂∂−
∂∂−∂

∂∂∂−
∂∂∂

=

txy

txz

tyz

zyx

DQ

000
000
000

000

1  

and 

( ) [ ].,,,2 zyxtDQ ∂−∂−∂−∂=  

We obtain a similar theorem as above. 
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Theorem 5. The system ( ) FADQ =  has a solution 0rA S∈  if and 

only if 1rF S∈  satisfies ( ) ,01 =FDQ  i.e., 

0=⋅∇ B  

.0=∂+×∇ BE t  

Therefore the potential A satisfies the formulas (3) if and only if the 
magnetic source-free Maxwell equations 0=dF  are satisfied. Moreover, if 

we consider magnetic sources in the form ( ),, mmmG jρ=  then the system 

( ) mGFDQ =1  has a solution 0rF S∈  if and only if 1rG S∈  satisfies 

( ) ,02 =mGDQ  i.e., 

.0=⋅∇+ρ∂ mm
t j  

In order to obtain a similar interpretation of the electric source-free part 
of Maxwell's equations ( ),0=∗ Fd  one could start with the following 

matrix ( ) :DQ∗  
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and then consider the equation ( ) ( ,,,, 1321 EBBBFADQ −−−=∗=∗  

) ., 32 tEE  The module associated to this equation has the same 

resolution (4), as ( )DQ∗  is obtained from ( )DQ  by interchanging the first 

three rows with the last three rows and multiplying the new first three 

rows by -1. Moreover, the syzygy ( )DQ∗
1  is basically the same as ( )DQ1  

modulo a minus sign and switching the first two with the last two rows. 

The second syzygy is ( ) ( ),22 DQDQ −=∗  and we obtain a similar theorem: 
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Theorem 6. The system ( ) FADQ ∗=∗  has a solution 0rA S∈  if and 

only if 1rF S∈∗  satisfies ( ) ,01 =∗∗ FDQ  i.e., 

0=⋅∇ E  

.0=∂−×∇ EB t  

Therefore the potential A satisfies the formulas (3) if and only if the 
electric source-free Maxwell equations 0=∗ Fd  are satisfied. Moreover, 

if we consider electric sources in the form ( ),, eeeG jρ=  then the system 

( ) eGFDQ =∗∗
1  has a solution 0rF S∈∗  if and only if 1reG S∈  

satisfies ( ) ,02 =∗ eGDQ  i.e., 

.0=⋅∇+ρ∂ ee
t j  

Our results above can be understood in terms of products of matrices 
of differential operators as follows. Note that considering the system 

( ) ,GFDP =  where ( ) ,ADQF =  we notice that ( ) ( ) ,0≡DQDPm  so the 

system becomes only ( ) ( ) .ee GDQDP =  The physical explanation is that 

in the presence of the gauge potential A and electric sources ,eG  
magnetic monopoles cannot exist. This can be seen directly, as 

dAF = leads to .0=dF  

Similarly, the dual system ( ) ,GFDP =∗∗  where ( )ADQF ∗=∗ will 

simplify to ( ) ( ) ,mm GADQDP =∗  as ( ) ( ) .0≡∗ DQDP e  The physical 

explanation is that in the presence of the gauge potential A and magnetic 

sources ,mG  electric sources cannot exist [2]. 

Consider now Maxwell's equation JFd =∗  in the variables A, 
which reads: 

□ ( ) .v
v

v jAA =∂∂− µ
µ  
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In order to write its matrix, note that we can also multiply the matrix 
obtained from the first four rows of the matrix ( )DP  above (1), say 
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and the matrix ( ).DQ  We obtain the matrix: 
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Consider now the new system 

( ) [ ] .,,, 321 te jjjGADS ρ==  

By running CoCoA on S and we get the resolution: 

00 441 1
→→→→→ MRRR

tt SS
 

with one syzygy 

( ) [ ],,,,1 zyxtDS ∂∂∂∂=  

which gives again the conservation law for the electric current, as 
expected. 

Theorem 7. The system ( ) eGADS =  has a solution 0rF S∈  if and 

only if 1reG S∈  satisfies ( ) .01 =eGDS  i.e., 

.0=⋅∇+ρ∂ ee
t j  

Finally, we note that in the case of Maxwell's equations it is not 
useful to combine both Q and S together in a single matrix because in 
this case the potentials are a tool to determine the fields. Note here that 
the resulting characteristic variety is zero, which leads to non-trivial 
implications for this system. 
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3. Algebraic Analysis of the Abelian ASD Equations 

In this section, we apply our computational algebra techniques for 
the Abelian anti-self- dual (ASD) equations written in local coordinates 
using as variables E, the electric field, and then A, the gauge potential. In 

the real Minkowski space 3,1R  both the ASD and the self-dual (SD) 
equations are satisfied only for trivial F. Therefore, one must either 
complexify F and consider this setup embedded in the complex 

Minkowski space ,3,1C  or work with real forms on (locally) either the 

Euclidean space 4R  or the ultrahyperbolic space .2,2R  For simplicity of 
presentation, we study only the cases of Euclidean and the complex 
Minkowski spaces separately below. Also, for consistency of the 
presentation, we will focus only on the ASD equations. 

3.1. The Euclidean case.  

In the standard Euclidean metric on ,4R  the ASD equations are: 

,,, 310331022301 FFFFFF −=−=−=  

which are equivalent to .BE −=  Because ,0=dF  it follows that 
,0=∗ Fd  thus F is also a solution to the source-free Maxwell's system. 

In local coordinates in variable E, the ASD equations in 4R  are: 

,,0 0=∂+×∇=⋅−∇ EEE t  (5) 

and they have real solutions. As in the previous section, we consider the 
matrix of differential operators: 
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and consider the electric vector ( ) .,, 321 tEEEE =  Then the equations 

(5) are equivalent to the system ( ) .0=EDV  For an electric source 

( ),,,, 321 jjjJ ρ=  we consider the non-homogenous system ( ) .JEDV =  
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Using CoCoA we compute the resolution corresponding to the associated 
module: 

00 341 1
→→→→→ MRRR

tt VV
 (6) 

and the syzygy: 

( ) [ ].,,,1 zyxtDV ∂∂∂∂=  

We obtain a similar theorem as above. 

Theorem 8. The system ( ) JEDV =  corresponding to the ASD 

equations in ,4R  has a solution 0rE S∈  if and only if 1rE S∈  satisfies 
( ) ,01 =JDV  i.e., the conservation law 

.0=⋅∇+ρ∂ jt  

If we consider the ASD equations in variable A, as we did in the case 
of Maxwell's system, we obtain the system ( ) ,JADW =  where: 
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with the corresponding resolution: 

00 441 1
→→→→→ MRRR

tt WW
 (7) 

and 1W  is basically the same syzygy as .1V  

3.2. The complex Minkowski case.  

In 3,1C  the ASD equations are ,iEB −=  which, in local 
(complex) coordinates are equivalent to 

.,0 0=∂−×∇=⋅∇ EiEE t  (8) 

The solutions in real space-time are automatically complex valued. If 
we denote the complex electric 3-vector by ,21 iEEE +=  where both 1E  
and 2E  are real 3-vectors, then the system obtained from (8) is 



COMPUTATIONAL ALGEBRA TECHNIQUES … 87

0=∂+×∇=⋅∇ 211 ,0 EEE t  

,,0 122 0=∂−×∇=⋅∇ EEE t  (9) 

system which is analog to the real Maxwell system. We keep the same 
notation for the matrices involved, but we consider variables ( )21, EE  

instead of ( ),, BE  and the vector [ ] [ ,,,,,, 2131211121
eeeeetee jjjGGG ρρ==  

] ,,, 232221
teee jjj  formed by the real components of the complex vector 

( )., jρ  Our computation algebra techniques will yield then, in a similar 

fashion, the following theorem: 

Theorem 9. The system ( ) GEDP =  has a solution 

021
riEEE S∈+=  if and only if 1rG S∈  satisfies ( ) .01 =GDP  i.e., the 

compatibility law for the complex electric source ( ) :, jρ  

.0j =⋅∇+ρ∂ ee
t  (10) 

A similar analysis for (complex) variables A will yield a similar result 
as Theorem 5. 

It is important to notice that in our algebraic approach the real-
Minkowski Maxwell's system of equations yields the same matrices as 
the complex-Minkowski Abelian instanton equations. In both cases, the 

characteristic variety of ( )RMExt ,1  is a cone, therefore, in both cases, 

the compact singularities cannot be eliminated, [2]. 
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